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Chapter 1

Summary

The Ethane architecture, developed at Stanford University, demonstrated that a novel approach to building
secure networks could support robust low-level security and flexible policy-based control over individual flows.
However, Ethane only provided operators with a single function: policy-based access control. Moreover,
Ethane’s policy was expressed in a language that did not have a rigorous logical foundation. Almost a year
of subsequent work, reported on here, extended Ethane to address these two shortcomings. First, the Ethane
architecture was evolved from Ethane’s narrowly targeted design to a fully general network operating system
called NOX, which provides users with powerful programmatic interface. Second, the policy language has
evolved from the Ethane’s primitive pol-eth to a much more powerful and rigorously analyzed Flow-Based
Security Language (FSL). This report describes these two advances.
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Chapter 2

Introduction

Enterprise networks are often large, run a wide variety of applications and protocols, and typically operate
under strict reliability and security constraints; thus, they represent a challenging environment for network
management. The stakes are high, as enterprise productivity and security can be severely hampered by
network misconfigurations or break-ins. Yet the current solutions are weak, making enterprise network
management both expensive and error-prone. Indeed, most networks today require substantial manual
configuration by trained operators [17, 50, 58, 55] to achieve even moderate security [56]. A Yankee Group
report found that 62% of network downtime in multi-vendor networks comes from human-error and that
80% of IT budgets is spent on maintenance and operations [38].

There have been many attempts to make networks more manageable and more secure. One approach
introduces proprietary middleboxes that can exert their control effectively only if placed at network choke-
points. If traffic accidentally flows (or is maliciously diverted) around the middlebox, the network is no longer
managed nor secure [58]. Another approach is to add functionality to existing networks—to provide tools
for diagnosis; to offer controls for VLANs, access-control lists, and filters to isolate users; to instrument the
routing and spanning tree algorithms to support better connectivity management; and then to collect packet
traces to allow auditing. This can be done by adding a new layer of protocols, scripts, and applications [1, 18]
that help automate configuration management in order to reduce the risk of errors. However, these solutions
hide the complexity, not reduce it. Moreover, they have to be constantly maintained to support the rapidly
changing and often proprietary management interfaces exported by the managed elements.

Rather than building a new layer of complexity on top of the network, the Ethane project explored
the question: How could we change the enterprise network architecture to make it more manageable? As a
result of our investigations, we decided to build Ethane around three fundamental principles that we feel are
important to any network management solution:

The network should be governed by policies declared over high-level names. Networks are most
easily managed in terms of the entities we seek to control—such as users, hosts, and access points—rather
than in terms of low-level and often dynamically-allocated addresses. For example, it is convenient to declare
which services a user is allowed to use and to which machines they can connect.

Network routing should be policy-aware. Network policies dictate the nature of connectivity between
communicating entities and therefore naturally affect the paths that packets take. This is in contrast to
today’s networks in which forwarding and filtering use different mechanisms rather than a single integrated
approach.

A policy might require packets to pass through an intermediate middlebox; for example, a guest user
might be required to communicate via a proxy, or the user of an unpatched operating system might be
required to communicate via an intrusion-detection system. Policy may also specify service priorities for
different classes of traffic. Traffic can receive more appropriate service if its path is controlled; directing
real-time communications over lightly loaded paths, important communications over redundant paths, and
private communications over paths inside a trusted boundary would all lead to better service.

The network should enforce a strong binding between a packet and its origin. Today, it
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is notoriously difficult to reliably determine the origin of a packet: Addresses are dynamic and change
frequently, and they are easily spoofed. The loose binding between users and their traffic is a constant target
for attacks in enterprise networks. If the network is to be governed by a policy declared over high-level
names (e.g., users and hosts) then packets should be identifiable, without doubt, as coming from a particular
physical entity. This requires a strong binding between a user, the machine they are using, and the addresses
in the packets they generate. This binding must be kept consistent at all times, by tracking users and
machines as they move.

To achieve these aims, the Ethane project followed the lead of the 4D project [29] and adopted a centralized
control architecture. Centralized solutions are normally an anathema for networking researchers, but we
feel it is the proper approach for enterprise management. IP’s best-effort service model is both simple
and unchanging, well-suited for distributed algorithms. Network management is quite the opposite; its
requirements are complex and variable, making it quite hard to compute in a distributed manner.

There are many standard objections to centralized approaches, such as resilience and scalability. However,
our experience with Ethane suggests that standard replication techniques can provide excellent resilience,
and current CPU speeds make it possible to manage all control functions on a sizable network (e.g., 25,000
hosts) from a single commodity PC.

Ethane bears substantial resemblance to SANE, our previously-proposed clean-slate approach to enter-
prise security [21]. SANE was, as are many clean-slate designs, difficult to deploy and largely untested.
While SANE contained many valuable insights, Ethane extends this previous work in two main ways:

• Security follows management: Enterprise security is, in many ways, a subset of network management.
Both require a network policy, the ability to control connectivity, and the means to observe network
traffic. Network management wants these features so as to control and isolate resources, and then to
diagnose and fix errors, whereas network security seeks to control who is allowed to talk to whom, and
then to catch bad behavior before it propagates. When designing Ethane, we decided that a broad
approach to network management would also work well for network security.

• Incremental deployability: SANE required a “fork-lift” replacement of an enterprise’s entire networking
infrastructure and changes to all the end-hosts. While this might be suitable in some cases, it is clearly
a significant impediment to widespread adoption. Ethane is designed so that it can be incrementally
deployed within an enterprise: it does not require any host modifications, and Ethane Switches can be
incrementally deployed alongside existing Ethernet switches.

The technical details of the current Ethane design can be found at [22]. Thus, the purpose of the present
report is not review the Ethane design, but to discuss extensions to this design. Our experiences with Ethane
pointed to two main areas where Ethane was lacking:

• Generality: Ethane was designed to provide a particular level of policy-based control. However, there
are many other network management tasks that don’t fit into this category. Thus, we decided to
generalize from Ethane’s single focus into a fully-general network operating system, called NOX. NOX
provides a general programmatic interface to the network, allowing network operators a fully flexible
tool for managing their network.

• Policy Language: Ethane used a policy called pol-eth for policy declarations. While we did not encounter
any practical problems with this language, it was not designed with any rigorous foundations. We have
designed a follow-on language, FSL, that is far more rigorous and addresses important issues in large-
scale networks with distributed administrative control.

This report focuses on these two topics. They are two distinc areas of interest, so they are treated in
separate sections in the following chapter.
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Chapter 3

Methods, Assumptions, and
Procedures

3.1 From Ethane to NOX

3.1.1 Introduction

As anyone who has operated a large network can attest, enterprise networks are difficult to manage. That
they have remained so despite significant commercial and academic efforts suggests the need for a different
network management paradigm. Here we turn to operating systems as an instructive example in taming
management complexity.

In the early days of computing, programs were written in machine languages that had no common
abstractions for the underlying physical resources. This made programs hard to write, port, reason about,
and debug. Modern operating systems facilitate program development by providing controlled access to
high-level abstractions for resources (e.g., memory, storage, communication) and information (e.g., files,
directories). These abstractions enable programs to carry out complicated tasks safely and efficiently on a
wide variety of computing hardware.

In contrast, networks are managed through low-level configuration of individual components. Moreover,
these configurations often depend on the underlying network; for example, blocking a user’s access with an
ACL entry requires knowing the user’s current IP address. More complicated tasks require more extensive
network knowledge; forcing guest users’ port 80 traffic to traverse an HTTP proxy requires knowing the
current network topology and the location of each guest. In this way, an enterprise network resembles a
computer without an operating system, with network-dependent component configuration playing the role
of hardware-dependent machine-language programming.

What we clearly need is an “operating system” for networks, one that provides a uniform and centralized
programmatic interface to the entire network.1 Analogous to the read and write access to various resources
provided by computer operating systems, a network operating system provides the ability to observe and
control a network.

A network operating system does not manage the network itself; it merely provides a programmatic
interface. Applications implemented on top of the network operating system perform the actual management
tasks.2 The programmatic interface should be general enough to support a broad spectrum of network
management applications.

1In the past, the term network operating system referred to operating systems that incorporated networking (e.g., Novell
NetWare), but this usage is now obsolete. We are resurrecting the term to denote systems that provide an execution environment
for programmatic control of the network.

2In the rest of this report, the term applications will refer exclusively to management programs running on a network
operating system.
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Figure 3.1: Components of a NOX-based network: OpenFlow (OF) switches, a server running a NOX controller process and
a database containing the network view.

Such a network operating system represents two major conceptual departures from the status quo. First,
the network operating system presents programs with a centralized programming model3; programs are
written as if the entire network were present on a single machine (i.e., one would use Dijkstra to compute
shortest paths, not Bellman-Ford). This requires (as in [15, 29, 47] and elsewhere) centralizing network state.
Second, programs are written in terms of high-level abstractions (e.g., user and host names), not low-level
configuration parameters (e.g., IP and MAC addresses). This allows management directives to be enforced
independent of the underlying network topology, but it requires that the network operating system carefully
maintain the bindings (i.e., mappings) between these abstractions and the low-level configurations.

Thus, a network operating system allows management applications to be written as centralized pro-
grams over high-level names as opposed to the distributed algorithms over low-level addresses we are forced
to use today. While clearly a desirable goal, achieving this transformation from distributed algorithms to
centralized programming presents significant technical challenges, and the question we pose here is: Can
one build a network operating system at significant scale? We argue for an affirmative answer to this ques-
tion via proof-by-example; herein we describe a network operating system called NOX (freely available at
http://www.noxrepo.org) that achieves the goals outlined above.

3.1.2 NOX Overview

We now give an overview of NOX by discussing its constituent components, observation and control granu-
larity, switch abstraction, basic operation, scaling, status and public release.

Components Figure 3.1 shows the primary components of a NOX-based network: a set of switches and one
or more network-attached servers. The NOX software (and the management applications that run on NOX)
run on these servers. The NOX software can be thought of as involving several different controller processes
(typically one on each network-attached server) and a single network view (this is kept in a database running
on one of the servers).4 The network view contains the results of NOX’s network observations; applications
use this state to make management decisions. For NOX to control network traffic, it must manipulate
network switches; for this purpose we have chosen to use switches that support the OpenFlow (OF) switch
abstraction [4, 45], which we describe later in this section.

3By centralized we allude to a shared memory programming model. However, as we discuss in Section 3.1.3, different memory
locations may have different access overheads.

4For resilience, this database can be replicated, but these replicas must be kept consistent (as can be done using traditional
replicated database techniques).
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Granularity An early and important design issue was the granularity at which NOX would provide ob-
servation and control. Choosing the granularity involves trading off scalability against flexibility, and both
are crucial for managing large enterprise networks with diverse requirements. For observation, NOX’s net-
work view includes the switch-level topology; the locations of users, hosts, middleboxes, and other network
elements; and the services (e.g., HTTP or NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state of network traffic. This choice of observation
granularity provides adequate information for many network management tasks and changes slowly enough
that it can be scalably maintained in large networks.

The question of control granularity was more vexing. A centralized per-packet control interface would
clearly be infeasible to implement across any sizable network. At the other extreme, operating at the
granularity of prefix-based routing tables would not allow sufficient control, since all packets between two
hosts would have to follow the same path. For NOX we chose an intermediate granularity: flows (similar in
spirit to [46]). That is, once control is exerted on some packet, subsequent packets with the same header are
treated in the same way. With this flow-based granularity, we were able to build a system that can scale to
large networks while still providing flexible control.

Switch Abstraction Management applications control network traffic by passing instructions to switches.
These switch instructions should be independent of the particular switch hardware, and should support the
flow-level control granularity described above. To meet these requirements, NOX has adopted the OpenFlow
switch abstraction (see [4, 45] for details). In OpenFlow, switches are represented by flow tables with entries
of the form:5

〈header : counters, actions〉

For each packet matching the specified header, the counters are updated and the appropriate actions taken.
If a packet matches multiple flow entries, the entry with the highest priority is chosen. An entry’s header
fields can contain values or ANYs, providing a TCAM-like match to flows. The basic set of OpenFlow
actions are: forward as default (i.e., forward as if NOX were not present), forward out specified interface,
deny, forward to a controller process, and modify various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may later be added to the OpenFlow specification.

Operation When an incoming packet matches a flow entry at a switch, the switch updates the appropriate
counters and applies the corresponding actions. If the packet does not match a flow entry, it is forwarded to a
controller process.6 These unmatching packets often are the first packet of a flow (hereafter, flow-initiations);
however, the controller processes may choose to receive all packets from certain protocols (e.g., DNS) and
thus will never insert a flow entry for them. NOX applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and (ii) determine whether to forward traffic, and, if
so, along which route (control).

As an example of (i), we have built applications that use DNS, DHCP, LLDP, and flow-initiations to
construct the network view, including both the network topology and the set of name-address bindings. We
have also built applications that intercept authentication traffic to perform user and host authentications
(using, for example, 802.1x). As an example of (ii), we have developed access-control and routing applications
that determine if a flow should be allowed, compute an appropriate L2 route, install flow entries in all the
switches along the path, and then return the packet to the originating switch (which then forwards it along
the designated path).

Scaling Our confidence in the scalability of NOX follows from considering the spectrum of timescales and
consistency requirements. In terms of timescales, NOX processing occurs at three very different rates:

5It is important to distinguish between the levels of abstraction provided by OpenFlow and NOX. NOX provides network-
wide abstractions, much like operating systems provide system-wide abstractions. OpenFlow provides an abstraction for a
particular network component, and is thus more analogous to a device driver.

6Typically, only the first 200 bytes of the first packet (including the header) are forwarded to the controller, but the controller
may adjust this, or request additional packets be forwarded, if more information is deemed necessary.
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• Packet arrivals: this is on the order of millions of arrivals per second for a 10Gbps link.

• Flow initiations: with NOX’s definition of flow (which is typically more persistent than NetFlow’s
definition), the flow-initiation rate is typically one or more orders of magnitude less than the packet
arrival rate.

• Changes in the network view: in our deployment experience this is on the order of tens of events per
second for networks of thousands of hosts.

In terms of consistency, the only network state that is global (i.e., must be used consistently across the
controller processes) is the network view; this consistency requirement arises because applications use data
from the network view to make control decisions, and those decisions should be the same no matter to which
controller instance the flow has been sent. In contrast, since neither packet state nor flow state are part of
the network view, they can be kept in local storage (i.e., packet state in switches, and flow state in controller
instances).

Thus, for the categories of events that occur on rapid timescales, NOX can use parallelism; packet arrivals
are handled by individual switches without global per-packet coordination, and flow-initiations are handled
by individual controller instances without global per-flow coordination. Flows can be sent to any controller
instance, so the capacity of the system can be increased by adding more servers running controller processes.

The one global data structure, the network view, changes slowly enough that it can be maintained
centrally (or, for resilience, it can be kept consistently on a small set of replicas) for even very large networks.

To give some rough numbers, a single controller process running on a generic PC can currently handle
100,000 flow initiations per second, more than sufficient for the large campus networks we’ve measured in
previous work [22].

Implementation Status We have been developing NOX for over a year and have been running it in
our internal network of roughly 30 hosts for over 6 months. It is our only means of network connectivity.
NOX runs in user-space on the network servers. Applications are written in either Python or C++ and
are loaded dynamically. The core infrastructure and speed-critical functions of NOX are implemented in
C++ (currently about 32,000 lines). The network view is a set of indexed hashtables, with extensions for
distributed access with local caching to aid scaling across multiple controller instances.

Public Release Our brief presentation of NOX is only the first step in our “proof” that one can build
a network operating system. NOX is freely available at http://www.noxrepo.org (GPL license), and we
invite the community to build additional applications on NOX. The community’s experience will provide the
definitive answer to the question of whether NOX provides a useful abstraction for network management.

3.1.3 Programmatic Interface

NOX’s programmatic interface is conceptually quite simple, revolving around events, a namespace, and the
network view.

Events Enterprise networks are not static: flows arrive and depart, users come and go, and links go up
and down. To cope with these change events, NOX applications use a set of handlers that are registered to
execute when a particular event happens. Event handlers are executed in order of their priority (which is
specified during handler registration). A handler’s return value indicates to NOX whether to stop execution
of this event, or to continue by passing the event to the next registered handler.

Some events are generated directly by OpenFlow messages, such as switch join, switch leave, packet
received, and switch statistics received. Other events are generated by NOX applications as a result of
processing these low-level events and/or other application-generated events. For example, NOX includes
applications that will authenticate a user by redirecting raw HTTP traffic (a packet received event) to a

7



captive web portal. Once the user is authenticated, the NOX application generates a user authenticated
event which can be used by other applications.

We have implemented applications that reconstruct the switch and host level topology, discover network
services, authenticate users and hosts, enforce network policy, and detect network scanning (to name a few).
Each of these services is coupled with an associated event that can be leveraged by other applications.

Network View and Namespace NOX includes a number of “base” applications that construct the
network view and maintain a high-level namespace that can be used by other applications. These applications
handle user and host authentication, and infer host names by monitoring DNS. The inclusion of high-level
names and their bindings in the network view allows any application to convert a high-level name into low-
level addresses (or vice versa), allowing applications to be written in a topology independent manner. To
perform such conversions, high-level declarations can be “compiled” against the network view to produce
low-level lookup functions that are enforced per-packet. These functions are recompiled on each change to
the network view. In Section 3.1.4 we describe how this is used in practice.

Because the network view must be consistent and made available to all NOX controller instances, writing
to it incurs some expense. Thus, NOX applications should only write to it when a change is detected in the
network, and not for every received packet. This is similar to the access model provided by NUMA memory
architectures. Also like NUMA, the worst result of a poorly written application is performance degradation,
not incorrect function.

Control Management applications exert network control through OpenFlow. The OpenFlow switch ab-
straction allows applications to insert entries, delete entries, or read counters from entries in the flow table.
Through its ability to modify these flow table entries, a management application has complete control of L2
routing, packet header manipulation, and ACLs. With the definition of additional switch actions, applica-
tions could also control common per-packet processing primitives such as encryption and rate-limiting.

The OpenFlow abstraction is intended to be general, so it can only require features common to most
switches. Therefore we do not expect that the actions standardized by the OpenFlow Switch Consortium
will include custom per-packet processing (e.g., deep packet inspection). However, NOX applications can
direct traffic through specialized middleboxes, so NOX-managed networks can still take advantage of the
latest per-packet processing technology.

Higher-Level Services NOX includes a set of “system libraries” to provide efficient implementations of
functions common to many network applications. These include a routing module, fast packet classification,
standard network services (such as DHCP and DNS), and a policy-based network filtering module.

Interface and Runtime Limitations Our goal with NOX is to build a practical platform for writing
network management applications that can scale to large networks. So far, we have focused on scalability
and functionality, and have yet to address a number of practical considerations that would improve the
safety and isolation of NOX applications. For example, we assume that there is coordination between
application writers and do not try to protect against malicious or faulty applications: a bad application
can drop an event, overwrite random memory, or hang the system with an infinite loop. We feel providing
inter-application coordination and isolation is a rich area for exploration in which the Maestro project has
already made progress [16].

3.1.4 Example Applications

We now describe a few examples of NOX applications. To illustrate NOX’s programming model, we start
with two oversimplified examples. To give an idea of NOX’s power, we then describe how we used NOX to
re-implement Ethane [22], an identity-based access-control system. To convey NOX’s flexibility, we end with
two ongoing projects aiming for novel network functionality.
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# On user authentication, statically setup VLAN tagging
# rules at the user’s first hop switch
def setup user vlan(dp, user, port, host):

vlanid = user to vlan function(user)
# For packets from the user, add a VLAN tag
attr out[IN PORT] = port
attr out[DL SRC] = nox.reverse resolve(host).mac
action out = [(nox.OUTPUT, (0, nox.FLOOD)),

(nox.ADD VLAN, (vlanid))]
install datapath flow(dp, attr out, action out)
# For packets to the user with the VLAN tag, remove it
attr in[DL DST] = nox.reverse resolve(host).mac
attr in[DL VLAN] = vlanid
action in = [(nox.OUTPUT, (0, nox.FLOOD)),

(nox.DEL VLAN)]
install datapath flow(dp, attr in, action in)

nox.register for user authentication(setup user vlan)

Figure 3.2: An example NOX application written in Python that statically sets VLAN tagging rules on user authentication.
A complete application would also add VLAN removal rules at all end-point switches.

scans = defaultdict(dict)
def check for scans(dp, inport, packet):

dstid = nox.resolve host dest(packet)
if dstid == None:

scans[packet.l2.srcaddr][packet.l2.dstaddr] = 1
if packet.l3 != None:

scans[packet.l2.srcaddr][packet.l3.dstaddr] = 1
if len(scans[packet.l2.srcaddr].keys()) > THRESHOLD:

print nox.resolve user source name(packet)
print nox.resolve host source name(packet)

# To be called on all packet-in events
nox.register for packet in(check for scans)

Figure 3.3: A simplistic NOX application written in Python that attempts to detect scanning hosts by tracking the number
of unique, unknown L2 and L3 destinations attempted by a single host.

Two Simple Examples

User-based VLAN Tagging Figure 3.2 contains a simplistic NOX application that sets up VLAN tagging
rules on user authentication based on a predefined user-to-VLAN mapping. NOX is responsible for detecting
all flow-initiations, attributing the flow to the correct user, host and ingress access point, and dispatching
the event to the application. This would provide attribution in logging and diagnostics; it could also, with
minor modifications to the routing module, support traffic isolation.

Simplistic Scan Detection The application in Figure 3.3 attempts to detect scanning hosts by counting
the number of unique L2 and L3 destinations a host tries to contact that have not authenticated. NOX
has access to traffic across the network, and it can leverage the network view which tracks all authenticated
hosts on the network. Contrast this simple implementation to that in [37], where scan detection required a
traffic choke-point and heuristics to guess whether an IP address is active.

Ethane

We recently built a system called Ethane that provides network-wide access-control using a centralized decla-
ration of policy over high-level principals (i.e., entities in the network view namespace) [22]. Because we have
implemented Ethane both with and without NOX, Ethane is an instructive example of how NOX simplifies
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management application development: our stand-alone Ethane implementation required over 45,000 lines of
C++, while our implementation within NOX required a few thousand lines of Python.

Ethane has two requirements that make it difficult to implement using traditional network management
techniques: (i) it requires knowledge of the principals on the network (e.g., users, nodes7), and (ii) it requires
control over routing at the granularity of a flow’s 7-tuple (source user, source host, first-hop switch, protocol,
destination user, destination host, last-hop switch).8 Both of these are natively supported by NOX: the
application has access to the source and destination principals associated with each event, and the routing
module supports route computation with constraints.

Implementing the basic Ethane functionality within NOX involves first checking each flow directly against
the declared policy and then passing the resulting contraints to NOX’s routing module. The only subtle
aspect of the implementation is how to efficiently check flows against the policy, since a linear scan of the
policy declaration file for each flow scales poorly as policy complexity increases. To improve performance in
the average case, we dynamically construct efficient lookup trees from the policy declarations.

Other Applications

The following are two examples of areas where NOX is being employed to explore new functionality.

Power Management There has been significant recent interest in managing networks to save power
[6, 31]. The two techniques most commonly discussed are (i) reducing the speed of underutilized links, or
turning them off altogether, and (ii) providing proxies to intercept network chatter (only allowing necessary
packets to reach hosts would make wake-on-LAN more effective). NOX’s global view of the network and
the routes currently in use facilitates the former technique, while NOX’s interposition on all flow-initiations
facilitates the latter. Thus, NOX is an ideal platform for implementing these techniques, and there is ongoing
work [33] pursuing this opportunity.9

Home Networking Calvert et al., in [19], trace many of the difficulties in managing home networks to
the end-to-end nature of the Internet architecture, and propose that a more centralized network design be
used in homes. NOX could centralize the observation and control functions of the home network, while
preserving the decentralized nature of the datapath (thereby avoiding potential bottlenecks). NOX would
also provide a natural platform on which one could build management tools to handle the many higher-layer
configuration issues (directing machines to local printers, etc.) that bedevil home networks. There are two
ongoing efforts exploring NOX’s use in the home.

3.1.5 Related Work

The idea of giving control mechanisms a global view of the network was first developed in the context of the 4D
project (see [15, 29, 47]). Providing this view required a new networking paradigm based on simple switches
enslaved to a logically centralized decision element that oversees the full network. This centralized paradigm
is more flexible, since new functionality can be centrally programmed at the decision element rather than
requiring a new distributed algorithm, but raises the specter of a single point of failure. However, adequate
resilience can be achieved by applying standard replication techniques to the decision element. Note that
these replication techniques are completely decoupled from the network control algorithms, so they do not
impede application innovation.

The goal of 4D systems is to control forwarding (e.g., FIBs in routers), and thus their network view only
includes the network infrastructure (e.g., links, switches/routers). The SANE [23] and Ethane [22] projects
provided a broader class of functionality by including a namespace for users and nodes in their network view
and keeping track of the bindings between these names and the low-level MAC and IP addresses. SANE and

7We use the term node to refer to hosts, switches, and other network elements.
8This requirement arises from policies that impose routing constraints on a particular class of flows, such as requiring them

to traverse specified middleboxes.
9We are indebted to Brandon Heller for pointing out NOX’s potential role in power management.
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Ethane also capture flow-initiation events, to exercise control at a finer granularity (per-flow control rather
than FIB-based control).

NOX extends the SANE/Ethane work in two dimensions. First, it attempts to scale this centralized
paradigm to very large systems. This scaling is made possible by the differing timescales discussed earlier.
The second extension is allowing general programmatic control of the network. The SANE/Ethane systems
were designed around a single application: identity-based access control. NOX aims to provide a general
programming interface that makes it easier to support current management tasks and possible to provide
more advanced management functionality. We have described a few example applications in this report, but
only experience will reveal how generally useful this interface is. By making NOX freely available, we hope
that the community will provide valuable feedback on NOX’s utility.

A related project of particular note is Maestro [16] (developed in parallel to NOX), which is also billed
as a “network operating system”. In general, operating systems can be seen as revolving around two basic
purposes: (i) providing applications with a higher level of abstraction so they need not deal with low-level
details, and (ii) controlling the interactions between applications. NOX focuses on the first, while Maestro
focuses on the second, “orchestrating” the control decisions made by various management applications. We
think these approaches could be combined, and we hope to soon explore this possibility.

Given that industry has substantially more experience with practical enterprise management and security
than academia, we would be remiss in not mentioning commercial solutions. Many commercial enterprise
security products, such as firewalls, intrusion detection and protection systems, network mappers, and prox-
ies, are network appliances in that a particular functionality is provided by an element (or several elements)
placed in the network. This appliance approach is easy to deploy, but leads to a fragmented architecture in
which the different appliances, and their functionality, are completely decoupled. Moreover, none of these
appliances provide the flexibility of a general programming environment for network observation and control.

One area where these commercial products are far more advanced than NOX is their ability to deal
with packet payloads. Many commercial solutions use deep-packet-inspection, proxies, and/or data-logging,
while NOX generally only inspects the first few hundred bytes in a flow. However, NOX-based management
applications can incorporate these payload processing technologies by directing flows through the appropriate
middleboxes. Thus, one shouldn’t view NOX as a replacement for current network management techniques,
but instead as a framework that can coordinate and manage these ever-advancing technologies.

3.2 The FSL Policy Language

One of the key components of NOX is the policy language that allows operators to express their policy desires.
In the following section, we describe this policy language; however, because we think it has applicability
outside of NOX, we place our discussion in a more general context.

3.2.1 Introduction

A wide range of modern enterprises rely on their computer networks for day-to-day operations, and rely on
their network administrators to configure security components so that the network is not misused by errant
individuals or malware. Traditionally, network security policies have been enforced by manual configuration
of individual network components such as router ACLs, firewalls, NATs and VLANs. However, emerging
enterprise network designs and products, like NOX, increasingly support global policies that can be expressed
using high level abstractions. While different network systems may employ different network-level mecha-
nisms, modern designs now allow us to usefully separate policy specification from policy implementation,
viewing the implementation mechanism as“compiling” high-level policy statements into the appropriate low-
level configurations needed by a network’s constituent components. In this setting, a central question that
emerges is: what should the policy language for a large-scale high-speed operational network look like?

In this report, we propose a Flow-based Security Language (FSL) that is designed to provide meaningful,
intuitive high-level concepts to network administrators, while at the same time supporting efficient imple-
mentation of the resulting policies in modern networks. Our language FSL is based on a restricted form of
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datalog [36, 10, 41, 54, 28, 42, 9], which is widely used in connection with database systems and certain
forms of logic programming, enhanced with a carefully-chosen use of negation [48, 10, 36]. As explained
further in the body of this report, the specific design of FSL was guided by three practical issues:

General constraints: Many treatments of access control only consider the binary actions of allow and
deny; however, modern network security requires a more general approach. Operators would like to
impose connectivity constraints on the rate, the path (requiring it to either avoid or include certain
nodes), and the directionality (such as restricting clients to outbound flows only) of communications.

Distributed and incremental authorship: There are many policy authors in large enterprises, and thus
the policy language must cope gracefully with any conflicts between their policies. In addition, op-
erators may need to quickly inject new policies into a system without ensuring the new entries are
consistent with all currently-installed policies. Thus, FSL must gracefully and predictably handle two
types of policy conflicts: those between administrators, and those within an administrator’s own rule
set.

Speed: Policy decisions must be enforced on each packet, and on network links this can easily reach millions
of enforcement decisions per second.

While there is a large literature on general access policy languages (see, for example, [36, 14, 13, 5]),
prior languages are generally geared toward general computing resources or operating system concepts such
as user names, host names, groups, services, and so on. As a result, most theoretically-grounded policy
languages have never been tested against the gritty realities of operational networks. In particular, the need
to process policies at line-speed and the challenges facing operators to declare fully consistent policies, have
rarely, if ever, been addressed in previous policy language designs.

3.2.2 Design Requirements

FSL is designed to be practically useful. This requires policies be writable by real operators and enforceable
by real networks. Thus, FSL’s design constraints come from the requirements of writing and implementing
policies. In this section we first discuss these two requirements in general.

Writing Policies

Because it is intended for use by real operators, FSL should make it simple to declare and maintain policies.
As time goes on, we expect organizations to accumulate a large number of policies. When an operator is
faced with a situation requiring a change in policy, it would be unreasonable to require the operator to
modify the entire policy corpus to ensure a newly written (or rewritten) policy has no conflicts with any
other policies. Instead, we want to make it possible for operators to incrementally add policy statements as
new requirements arise, even if these new statements conflict with older policy statements.

In addition, most large enterprise networks have several systems administrators, each with their own
(sometimes overlapping) domain of control. The language needs to accommodate such distributed authorship
of policies, with its inevitable conflicts.

Thus, FSL must have a clean model for reconciling conflicts, both within policies written by a single
operator, and between policies written by different operators.

Implementing Policies

Policy decisions must be enforced on each packet, which places a very stringent performance requirement on
any policy system. We can relax this requirement by assuming that policies are “flow-based.” Operationally,
by flow-based we mean that if two packets have the same header, then the policy dictates the same actions
for the two packets. In a flow-based system, each time a policy decision is made, the packet header and
the resulting policy action is (logically) inserted into a table of 〈header; action〉 entries, with entries timing
out after a period of inactivity. When a new packet arrives, the system first checks for a matching entry
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in the flow table. If found, the system executes the corresponding action, otherwise it must make a policy
decision. The performance requirement of the system is thus measured in terms of the number of new flows
per second.

In our experience, large networks (on the order of 10,000 hosts) typically generate fewer than 104 flows
per second. This is a demanding requirement, but is far smaller than that of a packet-based system where
each packet requires an independent policy decision. For instance, a fully loaded 10 Gbps link has over 106

packet arrivals per second, with an average packet size of 400 bytes.
Policies dictate the actions that should be taken for a particular set of flows. The actions that operators

want to implement include more than just allow or deny. They want to rate-limit flows, and force others to
traverse waypoints such as proxies or firewalls. Another common policy is to protect clients from inbound
connections using NAT, while allowing traffic to public servers within the same network via a DMZ.

Thus, the policy system must be able to deal with a set of various policy actions. As we explain later,
the only requirement we place on these actions is that they are partially-ordered with respect to security
(e.g., deny is more secure than allow, rate-limited is more secure than not limited, etc.). We say an outcome
is consistent with a policy if it is at least as secure as the action dictated by the policy. Thus, a policy’s
action can be seen as a constraint on that flow, restricting the possible set of outcomes.

Formal Model

We can formalize the policy system as follows. The fundamental unit upon which the network acts is a
unidirectional flow10 which consists of values for the eight fields.

Definition 1 (Unidirectional Flow). A unidirectional flow (uniflow for short) is characterized by an eight-
tuple.

〈usrc, hsrc, asrc, utgt, htgt, atgt, prot, request〉

• usrc, utgt ∈ U (the set of users)

• hsrc, htgt ∈ H (the set of hosts)

• asrc, atgt ∈ A (the set of access points)

• prot ∈ P (the set of protocols)

• request ∈ {true, false}

Uniflows constitute the input to the access control decision maker. A security policy for NOX associates
every possible uniflow with a set of constraints, and for the remainder of the report, we suppose that a
uniflow can be allowed, denied, waypointed (the route the uniflow takes through the network must include
the stipulated hosts), forbidden to pass through certain waypoints (the route for the uniflow cannot include
the stipulated hosts), and rate-limited. Formally, NOX policies are functions on uniflows as defined below,
and FSL is a language for describing such functions.

Definition 2 (NOX Policy). A NOX policy is a function from unidirectional flows to two sets of hosts and
a natural number. The first set of hosts corresponds to the set of required waypoints, the second set to the
set of forbidden waypoints, and the natural number corresponds to the allowed communication rate limit in
Mb/s.

U ×H ×A× U ×H ×A× P × {T, F} → 2H × 2H ×N

10The term unidirectional flow is more appropriate than simply flow because the latter is often analogous to a nonce, which
consists of two messages: one sent from the source to the destination and another one sent back. A unidirectional flow
corresponds to exactly one of those messages.
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3.2.3 FSL

Conceptually, FSL is a language for representing NOX Policies, policies that mandate which constraints
should be applied to which unidirectional flows. It was designed so that given a uniflow, the constraints on
that flow can be computed efficiently (on the order of a tenth of a millisecond) while supporting collabora-
tive policy authorship. After introducing the core of language, this section discusses conflicts and conflict
resolution, priorities, computational complexity, and illustrates the versatility of the language by explaining
how to enforce NAT and VLAN-based policies.

FSL is based on nonrecursive datalog with negation, where each statement represents a simple if-
then relationship. It relies on six keywords, five of which appear in the conclusions of rules: allow, deny,
waypoint, avoid, and ratelimit. allow and deny each take eight arguments corresponding to the eight
fields of a uniflow, and allow administrators to instruct NOX to allow and deny, respectively, any uniflow
that matches a given set of conditions.

For example, the following four rules say that a superuser has no communication restrictions.

allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ superuser(Us)
superuser(todd)
superuser(amy)
superuser(michelle)

The arguments to allow are all variables (denoted by symbols starting with a capital letter) and correspond
to the user source, host source, access point source, user target, host target, access point target, protocol, and
whether or not the flow is an initial request, respectively. The remaining three rules make simple declarative
statements.

The keywords waypoint, avoid, and ratelimit take one extra argument in addition to the eight fields
of a uniflow: the node that should be visited, the node that must not be visited, and the rate limit that
should be imposed, respectively.

Administrators write datalog security policies using these five keywords to describe the NOX policy
they would like enforced on uniflows. Every time a uniflow is initiated in an NOX network, the central
controller queries the current FSL policy to determine which constraints should be applied. Each query
supplies values for every one of the eight uniflow fields. If one of the fields is not known, because for example
the uniflow concerns a machine not in the NOX network, the sixth keyword unknown occupies that field.
Administrators can then write rules conditioned on unknown uniflow fields.

For example, to allow uniflows initiated by a desktop in the network to machines outside the network,
an administrator could write the following rule.

allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ desktop(Hs) ∧Ht = unknown

In addition to writing self-contained datalog policies, FSL allows administrators to write policies that
reference external information sources. Those sources may be defined by, for example, SQL queries over local
or remote databases, hash tables, or arbitrary procedural code. The definitions for those external sources
accompany an FSL policy; we will not discuss them further. In examples, we will indicate external references
by underlining the reference.

The formal syntax for FSL rules and FSL policies is given below. We use standard terminology. A
predicate is a symbol with an associated arity. A term is a variable (starting with an upper-case letter) or
an object constant (starting with a lower-case letter). An atom is a predicate of arity n applied to n terms.
A literal is an atom or ¬ applied to an atom. An expression is ground if it contains no variables.

Definition 3 (FSL Rule). An FSL rule in the context of external references G takes the following form.

h⇐ b1 ∧ · · · ∧ bn ∧ ¬c1 ∧ · · · ∧ ¬cm

• h, the head, and every bi and ci, collectively called the body, are atoms.

• Every variable in the body must appear in the head.
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• Predicates allow and deny have arity eight; waypoint, avoid, and ratelimit have arity nine; unknown
is an object constant.

• When waypoint, avoid, or ratelimit appear in the head, the last argument is an object constant.

• h does not contain any predicate g ∈ G.

For those interested in technical details, notice the second condition: that every variable that appears in
the body of a rule must appear in the head. This condition differs from the traditional safety11 restriction
in datalog in order to significantly simplify FSL’s implementation. See Section 3.2.5 for details.

Definition 4 (FSL Policy). An FSL policy is a set of FSL rules ∆ such that the dependency graph 〈V,E〉
is acyclic.

V : the set of predicates occurring in ∆

E: contains a directed edge from u to v exactly when there is a rule in ∆ where the predicate in the head is
u and the predicate v appears in the body.

The semantics of FSL begins with the external references. From a logical perspective, every external
reference implementation must ensure that every statement is either true or false—it must represent a
model. The actual implementation could be a database or procedural code. Moreover, we assume the
external references are aware of the reserved word unknown.

Definition 5 (External Reference Implementation). An implementation for the external reference gi of arity
n is a set of ground atoms of the form gi(a1, . . . , an).

Entailment for FSL is based on the usual stratified semantics from deductive databases and logic pro-
gramming [51].

Definition 6 (Basic Entailment). Let ∆ be an FSL policy, Γ the external reference implementations, and φ
a first-order sentence. Let M be the model that the stratified semantics assigns to ∆ ∪ Γ when the universe
consists of the objects mentioned in ∆, Γ, and φ. |=M denotes the usual definition of satisfaction in the
model M .

∆ ∪ Γ |= φ if and only if |=M φ

One important feature of FSL is that the order in which rules appear is irrelevant. This makes combining
a set of policies straightforward: collect the statements made in all of the policies. In contrast, languages
where the order of statements is relevant, e.g. firewall configuration languages [57], make it hard for a com-
puter system to combine independently authored policies automatically. Besides affording the independence
administrators are accustomed to today when defining access control policies, embracing collaborative pol-
icy authoring has an additional benefit: real-world disagreements can be automatically pinpointed by policy
analysis tools.

In FSL, a conflict arises for a given uniflow when a policy makes mutually exclusive decisions about
what to do with that uniflow. Unlike traditional access control where all conflicts arise from being both
granted and denied access, conflicts in FSL are produced in several different ways. Clearly a uniflow cannot
be allowed and denied simultaneously. More interestingly, a uniflow cannot be denied and at the same time
forced through an intermediate waypoint. Neither can a flow pass through a waypoint and avoid passing
through that same waypoint.

Because NOX cannot enforce a conflicting policy (no uniflow can be both allowed and denied), conflict
resolution is built into the language. Since FSL is a language concerned with security, its conflict resolution
mechanism errs on the side of caution. A conflicting set of constraints is always resolved to produce the
most restrictive constraint set. Deny is more restrictive than a set of required and prohibited waypoints,

11All variables must occur in a positive literal in the body.

15



and waypoints are more restrictive than a simple allow. A set of contradictory waypoints is equivalent to
deny. A lower rate limit is more restrictive than a higher rate limit.

Similarly, because NOX cannot enforce an incomplete policy (every uniflow must be either allowed or
denied), policy completion is also built into the language, but can easily be overridden. In contrast to conflict
resolution, policy completion errs on the side of permissiveness by allowing all unconstrained uniflows. The
rationale is a practical one: when installing a new system, it is useful to have all machines able to communicate
to ensure the installation is working correctly.

The conflict resolution and policy completion schemes are built into the version of entailment that NOX
uses to make authorization decisions. It relies on Basic Entailment (Definition 6) and ensures that every
FSL policy corresponds to an NOX Policy (Definition 2).

Definition 7 (FSL Entailment). Suppose ∆ is an FSL policy. FSL Entailment, |=FSL is defined in terms
of Basic Entailment, |=.

1. ∆ |=FSL deny(a1, . . . , a8), if
∆ |= deny(a1, . . . , a8) or ∆ |= ∃x.(waypoint(a1, . . . , a8, x) ∧ avoid(a1, . . . , a8, x)).

2. ∆ |=FSL waypoint(a1, . . . , a8, a9), if ∆ |= waypoint(a1, . . . , a8, a9) and (1) does not hold.

3. ∆ |=FSL avoid(a1, . . . , a8, a9), if ∆ |= avoid(a1, . . . , a8, a9) and (1) does not hold.

4. ∆ |=FSL allow(a1, . . . , a8), if (1-3) do not hold.

5. ∆ |=FSL ratelimit(a1, . . . , a8,m) if and only if m is the minimum of

{maxrate} ∪ {r|∆ |= ratelimit(a1, . . . , a8, r)}

One of the benefits of building a conflict resolution mechanism into the language is that users can
leverage it to express certain policies. For example, an open policy allows everything not explicitly denied.
The following two rules deny all communication initiated by a blacklisted user but allow everything else.

allow(Us, Hs, As, Ut, Ht, At, P rot, Req)
deny(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ blacklist(Us)

(3.1)

In contrast, the conflict resolution mechanism does not make it easy to express a closed policy: where
everything not explicitly allowed is denied. Adding permissive statements will not affect a too-restrictive
policy; consequently, FSL provides a different mechanism for relaxing security. An FSL cascade, named for
the cascading style sheets popular on the web, is a prioritized series of FSL policies, written P1 < · · · < Pn.
Any policy in the ordering overrides all of the policies less than it.

For example, to define a closed policy, one could construct a cascade with two policies: P1 < P2. P2

would describe all of the uniflows that should be allowed, and P1 would contain a single rule:

deny(Us, Hs, As, Ut, Ht, At, P rot, Req).

Definition 8 (FSL Cascade). An FSL cascade consists of a finite set of FSL policies {P1, . . . , Pn} and a
total ordering < over those policies. We denote a cascade with P1 < · · · < Pn.

In a cascade P1 < · · · < Pn, the highest ranked policy that says anything about a particular uniflow is
the only policy that says anything about that uniflow. In other words, policy Pi determines the constraints
on a uniflow if Pi constrains the uniflow and there is no other Pj that constrains that uniflow where j > i.
The formal semantics is based on a precise definition of the constraints imposed on a uniflow by a policy.
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Definition 9 (Uniflow Constraints). Consider a uniflow u = 〈a1, . . . , a8〉. When P is an FSL policy, let
CP (u) be the smallest set that includes

allow(a1, . . . , a8) if P |= allow(a1, . . . , a8)
deny(a1, . . . , a8) if P |= deny(a1, . . . , a8)

waypoint(a1, . . . , a8, a) if P |= waypoint(a1, . . . , a8, a)
avoid(a1, . . . , a8, a) if P |= avoid(a1, . . . , a8, a)

ratelimit(a1, . . . , a8, a) if P |= ratelimit(a1, . . . , a8, a).

CP (u) denotes the set of constraints imposed by P on uniflow u.

Above we used |=, i.e. entailment without conflict resolution, resulting in a definition for Uniflow Con-
straints that allows conflicts. Replacing |= with |=FSL produces a definition where conflicts have been
resolved. The definition we provide loses less information than the alternative, and since resolving conflicts
and computing the constraints imposed by a cascade are commutative operations (applying them in both
orders produces the same result), the alternate definition can be given in terms of the one above.

Definition 10 (FSL Cascade Semantics). Consider a uniflow u = 〈a1, . . . , a8〉 and a cascade P1 < · · · < Pn.
If Pu is the maximum Pi such that CPu(u) is nonempty, then the constraints imposed on u by the cascade
are exactly the constraints imposed on u by Pu.

CP1<···<Pn
(u) = CPu

(u)

FSL was designed to make writing authorization policies convenient, but it was also designed to make
implementing such policies efficient; hence, the complexity of FSL is important. The computational com-
plexity of Basic Entailment turns out to be PSPACE-complete, just like traditional nonrecursive datalog
with negation. Adding in conflict resolution and cascades increases the complexity by only a linear factor.

Theorem 1. Let ∆ be an FSL policy, Γ the external reference implementations, and φ a first-order sentence.
Determining whether or not ∆ ∪ Γ |= φ is PSPACE-complete.

Proof. The inclusion in PSPACE follows because an FSL policy is a special case of a nonrecursive logic
program with negation and without function constants, which is well-known to belong to PSPACE. The
hardness proof demonstrates how to encode an arbitrary quantified boolean formula (QBF) as an FSL policy.
The key insight into the proof is that existential variables can be simulated in the body of FSL rules by
duplicating the rule for each possible variable instantiation. For example, the datalog rule q(X)⇐ p(X,Y ),
where Y can only be either a or b can be written in FSL as the following two rules.

q(X)⇐ p(X, a)
q(X)⇐ p(X, b)

For encoding QBF formulae, this rule duplication technique is only polynomially larger than the usual
datalog encoding. See Appendix A.2 for full details.

The PSPACE complexity of FSL appears to destroy any hope of answering queries in the requisite tenth
of a millisecond, but fortunately another of the usual datalog complexity results holds for FSL policies:
restricting the arity of predicates to a constant reduces the complexity of entailment to polynomial time. The
implementation discussed in Section 3.2.4 employs this constant-arity restriction to guarantee polynomial-
time access control decision-making.

Finally, we illustrate how to express two standard security mechanisms for networks in FSL: network
address translation (NAT) and virtual networks (VLANs). NAT provides security by disabling incoming
connections for certain hosts, e.g. laptops, and disabling outgoing connections for servers.

deny(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ laptop(Ht) ∧Req = true
deny(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ server(Hs) ∧Req = true
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Figure 3.4: Component diagram of how FSL’s implementation interacts with other NOX networking functions

Virtual networks give the appearance that certain hosts are isolated from the rest of the network. For
example, the FSL implementation for a VLAN comprised of hosts a, b, and c is shown below.

vlan(a)
vlan(b)
vlan(c)
deny(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ vlan(Hs) ∧ ¬vlan(Ht)
deny(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ ¬vlan(Hs) ∧ vlan(Ht)

3.2.4 Implementation

We have implemented FSL as the default policy language for NOX. Our implementation supports integration
with external authentication stores (LDAP and AD), dynamic, incremental policy updates, and runtime
group membership changes. All language features are supported with the exception that predicates (except
the keywords) are restricted to one argument. Speed critical operations (such as runtime policy checking)
are implemented in C++, while compilation and various integration components are written in Python.

In this section we describe our implementation and how it interoperates with other networking functions
in NOX. We then describe our use of FSL internally. Finally, to demonstrate how the system performs
under load (we are targeting networks of tens of thousands of hosts), we present performance analysis over
stress-level workloads.

Operational Overview

Figure 3.4 shows how our FSL implementation integrates with NOX’s standard network functions. It relies
on other NOX applications to perform topology discovery, routing, authentication, and flow setup.

The FSL policy is declared in one or more files which are compiled into a low-level lookup tree. The
compilation process checks all available authentication stores to verify that the principal names used in the
policy file exist.

Packets received by NOX (for which there is no existing switch entry), are first tagged with all as-
sociated names and groups. The binding information between names and addresses happens at principal
authentication. If binding information does not exist for the packet, the host and user are assumed to be
unauthenticated, and the keyword unknown is used in place of the principal names.

In our implementation, we use an extension of FSL to control authentication policies (admission control).
This is done by using the unknown keyword in FSL rules, and passing all matching packets to the authenti-
cation subsystem. This allows the administrator to specify the required authentication scheme as an action
of an FSL condition. We describe this further in Section 3.2.4.
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NOX implements FSL cascades using priorities. Each rule in a single cascade file is associated with the
same priority level, with other files utilizing either lower or higher levels depending on their position in the
hierarchy. For authenticated packets, the FSL subsystem finds the highest priority matching rule(s) and
returns the resulting policy decision. If the decision is not a deny, the constraints are passed to the routing
subsystem which will attempt to find a policy compliant route. Finally, NOX will set up the path in the
network (specifying a rate limit if necessary) and re-inject the packet at the first hop switch. Once the flow
is set up, all subsequent packets from the flow will be forwarded directly by the switch without having to go
to the controller.

Compiler

The FSL compiler performs three tasks: it checks for valid usage of principals and predicates, it detects
static conflicts, and it translates rules into a low-level byte format for insertion into a decision tree allowing
fast lookup per packet.

Our compiler first parses the policy file and verifies that the principal names used exist in at least one
of the available authentication stores. It also finds and reports detectable static rule conflicts; support for
dynamic group membership obviates its ability to determine all possible conflicts. Conflicts arising due group
membership changes are handled at runtime in the manner described in Section 3.2.3.

Once the file is parsed, the compiler stores the rules persistently in a canonicalized internal format. This
is used to determine which rules have been added, removed or modified during a policy update, allowing for
incremental updates of the policy at runtime. Generally, updates to the policy only require the addition and
deletion of a few rules, rather than deleting and re-inserting the full policy.

Name to Address Bindings

NOX associates high-level names and groups with packet header values at authentication time. When a
principle authenticates, its name is bound to the source access point, source MAC address, and source IP
address (if it exists), used during the authentication exchange. The names and user credentials are generally
retrieved from a remote authentication store (in the case of standard directory services). On succesful
authentication, the names are cached locally at the controller. On each new flow, the source and destination
header fields are hashed and used to retrieve the cached name information which is subsequently passed to
the FSL lookup tree.

In principle, changes to group membership should be reflected immediately in the internal cache estab-
lished at authentication time. While this is the case for our built-in authentication store, our implementation
currently does not support dynamic updates to group membership in external directories. In this case, mod-
ification to the group membership of an authenticated principal may not take effect until it reauthenticates.

Policy Lookup and Enforcement

The policy evaluation engine is built around a decision tree intended to minimize the number of rules that
need be checked per flow. The tree partitions the rules based on the eight uniflow fields and the set of groups,
resulting in a compact representation of the rule set in a ten-dimensional space. Negative literals are ignored
by the indexer and evaluated at runtime.

For example, the rule

allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Us = alice ∧ g(Hs) ∧ h(As) ∧ ¬p(At)

constrains Us, mentions the source groups g and h, and does not mention any target groups. This rule would
belong to the node in the decision tree where Us = alice and the source is constrained by either g or h.

Each node in the decision tree has one child for each possible value for the dimension that node represents,
e.g. a node representing Us has one child for each value Us is constrained to in the subtree’s policy rules. In
addition, because some of a subtree’s rules may not constrain the dimension a node represents, e.g. Prot in
the rule above, each node includes an ANY child for such rules to be placed in. Each node in the decision
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Figure 3.5: Example decision tree

tree is implemented using a hash table with chaining to ensure that each of its children can be found in
near constant time. The decision as to which of the ten attributes to branch on at any point in the tree is
made by finding the dimension that most widely segments a subtree’s rule set. In particular, we select the
dimension that minimizes the average number of rules at each child node plus the number of ANY rules in
the subtree.

Recall that group membership is computed at authentication time. We will use Gs to denote all those
groups to which the source of a uniflow belongs and Gt to denote the groups to which the target of a uniflow
belongs. To find all rules that pertain to any given uniflow, the usual decision-tree algorithm is used with
one exception: multiple branches may be followed at any given node. In particular, the ANY branch is
always followed, and for branches splitting on source groups and target groups, all children that belong to
the uniflow’s Gs and Gt respectively, are followed.

For example, consider the policy that includes the following rules and the associated decision tree in
Figure 3.5.

1. allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Us = alice ∧ g(Hs)
2. allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Us = alice ∧ g(Hs) ∧ h(As) ∧ ¬p(At)
3. allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Us = bob ∧ g(As)

The root of the decision tree could either split on Us or the source groups, since they are equally good at
widely segmenting the rules. Suppose it splits on Us. Then the root has two children: one for alice and
one for bob. (Because every rule constrains Us there is no need for ANY.) Rule (3) belongs to the bob child,
which requires no further splitting. The other two rules are assigned to the alice child. The alice node is
split on the source group dimension, where there are two options: g and h. Rule (1) is placed into the g
child, and rule (2) is placed into either the g or h child. A uniflow originating from alice where the source
fields only belong to group g would evaluate just rule (1), assuming (2) is placed into the h child and both
(1) and (2) otherwise. If instead alice initiated a uniflow where the source fields belong to both g and h,
then rules (1) and (2) are both evaluated, regardless of where rule (2) is placed in the tree.

The cost of answering an FSL entailment query is the cost of finding the pertinent rules in the tree index
plus the cost of evaluating those rules. Rule evaluation is performed in the usual way. Conflict resolution is
built into the system: actions of all matching rules are collected, and the most secure, potentially composite,
action is returned. An FSL cascade is implemented by evaluating rules in priority order; once a match is
found, only the remaining rules of the same priority are evaluated.

Bootstrapping Authentication

Authenticating users and hosts generally requires some default connectivity which is dependent on the
admission policy. For example, we are preparing for a deployment in a large university in which all users
with private addresses must authenticate via a captive web portal before being given access to the network.
Therefore, we have to provide default access from hosts to web-servers, and from the web-server to the
directory servers.
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We have extended our FSL implementation to also support the declaration of admission control policies
and the requisite connectivity for authentication. Similar to access controls, the admission policy is a set
of FSL-like rules in which the action denotes the authentication type. The predicates used in the rules
include access points (e.g., wireless(As)), protocols, IP prefixes, and special purpose built-in groups such as
all-registered-macs. For example, the following policy snippet sets up default connectivity for authentication,
and redirects all unauthenticated wired hosts to a captive web portal.

allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Prot = ARP
allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Prot = DHCP
allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Hs = authentication server ∧ Prot = HTTP
http-redirect(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Hs = unknown ∧ Prot = HTTP

cascade()

deny(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Hs = unknown

In our network, all hosts on wired access points are automatically authenticated if they have a registered
MAC address. Whereas users connecting via wireless are required to use a captive web portal. While logically
the admission control policy is distinct from the access control policy (since automated conflict resolution is
no longer viable), we use the same internal mechanisms to enforce it.

Experience and Performance

The security policy of our local area network, consisting of roughly 50 hosts connected through 4 switches,
is managed by our FSL implementation running on NOX. The policy contains 24 rules declared over 64
principals and 11 groups including workstations, servers, printers, and mobile devices.

We include a subset of the policy in Appendix A.1. Roughly, our internal policy allows unrestricted ARP
and SSH between all hosts. Test servers are not allowed to communicate externally. Servers and printers
should only allow inbound connections (except for outgoing SSH sessions on server) providing protection
similar to a DMZ. Laptops and mobile devices (such as mobile phones supporting Wi-Fi) are not allowed
inbound connections (similar to NAT). We also have a few rules which allow monitoring and diagnostic traffic
between an administrative host and all switches. The lowest priority rule in the policy file matches all flows
and denies the traffic.

Round trip flow setup latencies (involving two permission checks, route calculations, and flow-entry
setups) are generally under 50ms. Once the policy decision has been made for each uniflow, all subsequent
packets for that flow are forwarded at line speed (as supported by the switch forwarding hardware). On a
network of this size, there is not enough traffic to stress our implementation (we generally see less than 20
new flow setups/s). However in benchmarks using generated traffic, our implementation running with our
internal policy file supports permission checks on over 60,000 flows/s, an order of magnitude higher than
any network we have measured. We present more performance tests of the system under load below.

Our experience has been that our simple rule set provides sufficient connectivity for day to day operations
without requiring constant maintenance. Furthermore, we find that almost all of the rules are declared over
classes of devices that connect to the network (as opposed to individual machines or users) and therefore
we expect the policy file to grow slowly with the number of managed principals. We expect to explore this
in more detail shortly as we are currently preparing for two much larger deployments of FSL in networks of
hundreds and thousands of hosts.

In preparation for broader deployment we have tested our implementation’s performance under generated
workloads. Unfortunately it is difficult to produce meaningful results without access to sample policies
written for real networks. In the degenerate case, enforcement of a policy with many ANY rules can scale
linearly as the rule set size grows. Conversely, a large policy containing only exact match rules could force
construction of a maximum depth tree, incurring significant hashing overhead.

We test the performance and memory overhead of our implementation with policy files of increasing size
(table 3.1). All policies (except those with 0 rules) forced a maximum depth tree once constructed. For each
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incoming flow, on average log2(#rules) matched and had to be evaluated by the system. Table 3.2 shows the
same test using policies in which 10% of the rules contain ANY fields (the number of fields containing ANYs
is evenly distributed between 1 and the maximum number of fields). In this case, the increased number of
rules matching a given flow due to the number of ANYs causes a performance degradation in larger policy
files.

The goal of this analysis is not to provide an exhaustive investigation of the performance of our im-
plementation, but rather to gain some insight into its handling of load under various rule sets. As shown
in [21, 20], even large enterprise networks of tens of thousands of hosts generally have less than 10,000 flow
requests per second, far below the performance capabilities of our implementation for the rule sets tested.

flows/s Mbytes avg. matches
0 rules 103,699 0 0
100 rules 78,808 0 4
500 rules 78,534 1 6
1,000 rules 75,414 2 7
5,000 rules 71,702 9 8
10,000 rules 67,843 56 9

Table 3.1: Performance and memory overhead of our FSL im-
plementation over policies with increasing rule count. All poli-
cies contain exact match rules and average log2(#rules) match-
ing rules per flow. The rightmost column contains the average
number of matching rules per flow.

flows/s Mbytes avg. matches
0 rules 103,699 0 0
100 rules 100,942 1 2
500 rules 85,373 1 4
1,000 rules 76,336 2 10
5,000 rules 54,416 9 30
10,000 rules 46,956 38 52

Table 3.2: Performance and memory overhead of our FSL
implementation over policies declared over 1000 principals in
which 10% of the rules contain ANYs. The rightmost column
contains the average number of matching rules per flow.

3.2.5 Related Work

FSL is based on a restricted form of datalog [36, 10, 41, 54, 28, 42, 9] with negation [48, 10, 36] so that
authorization policies can be authored in distributed settings [13, 35, 48, 7]. Because disagreements naturally
arise among administrators, FSL was designed so that those disagreements would manifest as conflicts in
policies [53, 36, 12, 10, 24, 27, 48, 11, 7]. Conflicts between policy modules entered by different administrators
can be detected by automated methods [44, 7, 36] that can be built into policy management tools. At the
same time, because FSL policies are used by real systems [14, 26, 52], any conflicts that are not resolved
by administrative tools must be resolved automatically at enforcement time [53, 36, 12, 10, 24, 27, 48, 11].
Unlike prior languages, FSL conflict resolution is complicated by the fact that policies can reference external
sources [48, 13, 41], which can change independent of the policy. This feature of FSL is essential for large-
scale deployment, since it is impractical to ask large organizations to rewrite their organization charts in a
network policy language. Finally, FSL employs priorities (called “overrides” in [13] and “exceptions” in [12])
via FSL Cascades, to help administrators express certain types of policies.

FSL lacks certain features found in the literature. The most common reason a feature was excluded is
the performance requirement. Below, we enumerate some of the limitations of FSL and explain why the
limitations exist.

Datalog based. Other languages are based on fundamentally different and often more expressive logics
[32, 53, 5, 26, 27, 8, 24]. First, datalog was chosen because of implementation concerns: the simpler the
language, the simpler and faster the implementation. Second, additional expressiveness allows users to state
policies that can be difficult to enforce. In first-order logic, a policy might say to allow one of two uniflows
without saying which. Third, datalog is closer to traditional CS programming languages than other logics,
which is important because policy authors are network operators (who may be logic novices).

Existential variables are disallowed. Existential variables (those that occur in the body of a rule
but not in the head) are usually included in datalog languages because they are useful in a variety of
circumstances. For example, Role-based Access Control (RBAC) has been explained very concisely using
existential variables [25]. Without existential variables, the implementation is far simpler because there is
no search through variable assignments. q(X) ⇐ p(X,Y ) ∧ r(Y ) says that q(t) is true if there is some u
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such that p(t, u) ∧ r(u) is true. The implementation needs to search through the possible assignments to Y .
FSL’s design and application ensure that such a search need never occur.

Recursion is disallowed. Policy languages that support recursion without negation [41], stratified
recursion [36] and arbitrary [10] recursion occur in the literature. Without recursion, FSL’s implementation
is both simpler and faster.

Conflict resolution is built into the language. Sometimes the conflict-resolution scheme for a
language is built-in [48, 24, 11], but sometimes it is defined by the user [10, 53, 27]. Sometimes, conflicts are
only detected but not resolved [7], and other times conflicts are handled by a combination of detection and
user-defined resolution [36]. Our choice to fix the conflict resolution scheme comes about because conflicts
and conflict resolution in FSL are more complex than usual.

Unlike common access control decisions, which either allow or deny an action, each decision in FSL
consists of a set of constraints, e.g. pass through waypoint A but do not pass through B. Conflict resolution
consists of mapping one set of constraints to another set; moreover, only certain combinations of constraints
are actually enforceable. A system cannot force a uniflow through waypoint A and at the same time avoid
waypoint A. It is likely that if conflict-resolution were left to user specification, some conflicts would not
actually be resolved, and a built-in resolution mechanism would be necessary anyway.

Delegation is not directly supported. One common concern in authorization logics is the ease with
which one principal can delegate rights to another [26, 43]. Such concerns are important when there are
certain actions that can change which future actions are allowed and denied. In the setting for which FSL
was designed, there are no rights-changing actions. The answer to all authorization requests is the same for
all time (except for external reference changes); hence, delegation primitives have been omitted.

FSL policies are timeless. Some policy languages include constructs that reference temporal events
[34, 26, 53, 43, 48, 39], e.g. if A communicated with B in the past, then disallow B from communicating
with C. History acrues very quickly with 104 flows initiated per second. Storing that much information is
impractical, and even if it were practical, the system would not be able to answer queries about it quickly
enough.

Policy enforcement is centralized. Languages built for trust management are designed so that the
authorization policy can be authored by a group of people working independently. But unlike FSL, which
enforces that policy at a central location, trust management languages enforce each policy in a distributed
fashion [5, 39, 54, 42, 40, 49, 9]. Distributed enforcement is the subject of future work.

Metalevel policy operations are limited. FSL supports two metalevel policy operations: combining
a set of policies, and prioritizing a set of policies (FSL cascades). Among the other metalevel operations
included in [13], the most germane is scoping, also used in [48]. Scoping is an operation that restricts a
given policy to a certain class of objects. For example, in a university setting scoping could restrict a CS
administrator from constraining interdepartmental server communications in the Math department. Adding
scoping to FSL is the subject of future work.

Finally, it is worth highlighting the features of FSL that we have been unable to find elsewhere in the
literature.

Access control decisions are constraint sets. Instead of either allowing or denying every request,
FSL prescribes a set of constraints that apply to that request. Allow and deny are special cases.

Conflict resolution maps one constraint set to another. Because access control decisions result
in a set of constraints, a conflict can be attributed to three or more of those constraints. Conflict resolution
takes as input one constraint set and outputs another constraint set.

3.2.6 Discussion

Motivated by the opportunities provided by emerging network technologies, and the need for network opera-
tors and administrators to express general constraints using distributed and incrementally authored policies
enforced efficiently at line speeds, we developed a network security policy framework around a language ex-
pressing flow-based network policies. Our policy language FSL allows operators to selectively allow network
access, while also imposing constraints on usage rate, allowed network paths (which may be required to
avoid or include certain nodes), and directionality (such as restricting clients to outbound flows only). As
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the name Flow Security Language (FSL) implies, the key underlying concept is network flow. In particular,
after trying several alternatives, we decided to take unidirectional flows as the basic unit of network access,
regarding bidirectional flow as comprising two related uniflows. By associating additional characteristics
such as flowrate and initiating party with each flow, we achieve a systematic network flow analog of the
traditional access-control matrix (of, say, users, filenames, and read-write-execute permissions). Building on
this foundation, FSL allows succinct, structured, high-level specification of allowed flows, freeing network
administrators from the drudgery of configuring myriad router ACLs, firewalls, NATs and VLANs to achieve
comprehensive and conceptually straightforward network usage policies.

FSL is a declarative policy language based on nonrecursive datalog with structured negation. The
declarative nature of FSL makes it possible for separate network administrators to separately express their
policies and automatically combine those policies. We show how combined policies with potentially conflicting
components can be enforced efficiently. In addition, logic-based algorithms that detect and resolve conflicts in
predictable and reliable ways may be incorporated into policy development environments. FSL also supports
prioritized policy combination, which is a natural way to express many policies and enables incremental policy
updates.

We demonstrated FSL’s use in practice by implementing it within the NOX network architecture, running
it in our internal network for nearly a year, and subjecting the system to additional tests using much more
demanding artificially generated loads. We show through performance analysis that our implementation has
modest memory requirements and can scale to very large networks while supporting policy files of tens of
thousands of rules. We are preparing to further explore FSL’s application in operational neworks through
much larger deployments in the near future.
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Chapter 4

Results and Discussion

The previous chapter covered the detailed technical results on each of the two topic areas, NOX and FSL.
In this discussion, we step back and discuss the more general lessons we learned from building and using our
system.

The largest lesson we learned is that (once deployed) we found it much easier to manage the network than
we expected. On numerous occasions we needed to add new switches, new users, support new protocols,
and prevent certain connectivity. On each occasion we found it natural and fast to accomplish these tasks.
There is great peace of mind to knowing that the policy is implemented at the place of entry and determines
the route that packets take (rather than being distributed as a set of filters without knowing the paths that
packets follow). By journaling all registrations and bindings, we were able to identify numerous network
problems, errant machines, and malicious flows—and associate them with an end-host or user. This bodes
well for network managers who want to hold users accountable for their traffic or perform network audits.

We have also found it straightforward to add new features to the network: either by extending the policy
language, adding new routing algorithms (such as supporting redundant disjoint paths), or introducing new
application proxies as waypoints. Overall, we believe that our approach’s most significant advantage comes
from the ease of innovation and evolution. By keeping the switches dumb and simple, and by allowing new
features to be added in controller software, rapid improvements are possible.
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Chapter 5

Conclusions

As in all software systems research, “the proof is in the using of the system” and at this point we have
substantial experience with it. We have been running it internally throughout this year’s project, and we
now have trial deployments at several universities. Our basic conclusion is that the system:

• Makes network management easier: by providing a general programmatic interface, with a full
set of name-address bindings, network operators can accomplish complex tasks with a minimum of
effort.

• Makes networks more secure: our approach both secures networks at a low-level (i.e., preventing
ARP-spoofing) and also provides the ability to control access in a flexible manner.

• Makes network hardware less expensive: by taking the intelligence out of switches, one can use
relatively inexpensive commodity switches.
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A.1 Example Policy Cascade

The following policies are ordered from highest to lowest: P1 < P2 < P3 < P4. The first policy shown below
overrides all those after it—likewise for the other policies.

Policy P4

# allow ARP and DHCP
allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Prot = arp
allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Prot = dhcps ∧Ht = gateway
allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Prot = ssh ∧ computer(Hs)

# allow computers to ssh anywhere
allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Prot = ssh ∧ computer(Hs)

# allow internal monitoring flows: proprietary protocols registered with the system
allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Prot = 1616 ∧Hs = badwater
allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Prot = 1717 ∧Hs = badwater
allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Prot = 1818 ∧Hs = badwater
allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Prot = 1616 ∧Ht = badwater
allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Prot = 1717 ∧Ht = badwater
allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Prot = 1818 ∧Ht = badwater

Policy P3

# dissallow testing machines from communicating externally
deny(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ testing(Hs)
deny(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ testing(Ht)

# servers should be inbound-only
deny(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Req = true ∧ server(Hs)
deny(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Req = true ∧ printer(Hs)

# laptops and mobile devices should be outbound-only
deny(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Req = true ∧mobile(Ht)
deny(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ Req = true ∧ laptop(Ht)

Policy P2

# allow known devices to communicate as long as they abide by the
# previous rules.
allow(Us, Hs, As, Ut, Ht, At, P rot, Req)⇐ all(Hs)

Policy P1

# default deny
deny(Us, Hs, As, Ut, Ht, At, P rot, Req)
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A.2 Proofs

Theorem 2 (Entailment for FSL is PSPACE-complete). Given an FSL rule set ∆ and an atom a, checking
whether ∆ |= a is PSPACE-complete.

Proof. Because FSL is a form of function-free, recursion-free logic programming, and entailment for the
latter is PSPACE-complete, entailment for FSL belongs to PSPACE. To show entailment is PSPACE-hard,
we perform a reduction from QBF.

Consider any quantified boolean formula in prenex form: Q1x1 . . . Qnxn.φ(x1, . . . , xn). The FSL query
that represents the value of this QBF will be written as

valQ1x1...Qnxn.φ(x1,...,xn).

The proof demonstrates how to define this predicate in polynomial time. The first step is quantifier elimi-
nation.

If Q1 is ∀, then the query is defined as follows.

valQ1x1...Qnxn.φ(x1,...,xn) ⇐ valQ2x2...Qnxn.φ(x1,...,xn)(1) ∧ valQ2x2...Qnxn.φ(x1,...,xn)(0)

Here 1 represents true, 0 represents false, and valQ2x2...Qnxn.φ(x1,...,xn) is a unary predicate that is true for
all those u such that Q2x2 . . . Qnxn.φ(u, x2, . . . , xn) is true. Otherwise, Q1 is ∃, and the definition is given
by two rules.

valQ1x1...Qnxn.φ(x1,...,xn) ⇐ valQ2x2...Qnxn.φ(x1,...,xn)(1)
valQ1x1...Qnxn.φ(x1,...,xn) ⇐ valQ2x2...Qnxn.φ(x1,...,xn)(0)

Both cases require constructing definitions for additional predicates. The process is very similar to what is
shown above. After constructing k definitions, we need to define

valQk+1xk+1...Qnxn.φ(x1,...,xn)(x1, . . . , xk).

If Qk+1 is ∀, the definition is as follows; otherwise, the definition requires two rules as shown above.

valQk+1xk+1...Qnxn.φ(x1,...,xk)(x1, . . . , xk)⇐
valQk+2xk+2...Qnxn.φ(x1,...,xn)(x1, . . . , xk, 1) ∧ valQk+2xk+2...Qnxn.φ(x1,...,xn)(x1, . . . , xk, 0).

Notice two things. First, in every rule, the variables in the body also appear in the head, making each rule
a valid FSL rule. Second constructing the rules corresponding to each quantifier takes time linear in the
original sentence, and there are no more than a linear number of quantifiers; thus, the total cost is at most
quadratic in the size of the original sentence.

After eliminating all n quantifiers, the rule set requires a definition for

valφ(x1,...,xn)(x1, . . . , xn)

where φ(x1, . . . , xn) is quantifier-free. The definition should be true for exactly those assignments to x1,. . . ,xn
that satisfy the boolean formula φ(x1, . . . , xn). Suppose that φ(x1, . . . , xn) is written in conjunctive normal
form.

((p11 ∨ · · · ∨ p1k1) ∧ · · · ∧ (pm1 ∨ · · · ∨ pmkm
))

Here pij represents xl or ¬xl for l in {1, . . . , n}.
Just like the case of quantifiers, the definition for valφ(x1,...,xn)(x1, . . . , xn) is broken into a definitions

for a series of predicates: val1,. . . ,valm. Predicate vali corresponds to the evaluation of φ(x1, . . . , xn) when
only considering the first i clauses. The definitions are indicated below. We use two macros. var(pij) is
replaced by the variable mentioned in pij , and sign(pij) is replaced by 1 if the literal pij is positive and 0
otherwise. Thus, each instance of var(pij) = sign(pmn) is positive equality atom comparing a variable and
1 or 0, e.g. x = 1.
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val1(x1, . . . , xn)⇐ var(p11) = sign(p11)
...
val1(x1, . . . , xn)⇐ var(p1k1) = sign(p1k1)
val2(x1, . . . , xn)⇐ var(p21) = sign(p21) ∧ val1(x1, . . . , xn)
...
val2(x1, . . . , xn)⇐ var(p2k2) = sign(p2k2) ∧ val1(x1, . . . , xn)
...
valm(x1, . . . , xn)⇐ var(pm1) = sign(pm1) ∧ valm−1(x1, . . . , xn)
...
valm(x1, . . . , xn)⇐ var(pmkm

) = sign(pmkm
) ∧ valm−1(x1, . . . , xn)

Because valm(x1, . . . , xn) corresponds to the truth value of φ(x1, . . . , xn) when taking all m clauses into
account, it is exactly the definition we need.

valφ(x1,...,xn)(x1, . . . , xn)⇐ valm(x1, . . . , xn)

Again, every variable in the body also appears in the head. The number of rules is equal to the number
of literals in conjunctive normal form, and each rule is linear in the number of variables. Thus, the resulting
rules are polynomial in the size of the quantifier-free portion of the formula.

This completes the encoding. The time to produce the encoding is polynomial in the size of the original
QBF formula, which completes the proof of PSPACE-hardness.

35



Symbols, Abbreviations, Acronyms

• NOX: Network Operating System

• FSL: Flow-Based Security Language

• VLAN: Virtual Local Area Network

• OF: OpenFlow
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